
Panel Session:

Prioritizing OpenMP Features to Provide for
Performance, Portability and Productivity

Oscar Hernandez (ORNL)
Vivek Kale (BNL)

2 Exascale Computing Project

OpenMP Architecture Review Board

The mission of the OpenMP ARB
(Architecture Review Board) is to
standardize directive-based multi-
language high-level parallelism
that is performant, productive and
portable.

3 Exascale Computing Project

How OpenMP evolves compared with HPC trends (www.top500.org)

Credit: Jose Monsalve Diaz, at University of Delaware

Average # of cores per socket

History of OpenMP: 1997 - 2020

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

In spring, 7
vendors and

the DOE agree
on the spelling

of parallel
loops and form
the OpenMP

ARB. By
October,

version 1.0 of
the OpenMP
specification
for Fortran is

released.

1.0

Minor
modifications

1.1

cOMPunity, the
group of
OpenMP
users, is
formed to

enable
researcher

participation.an
d organize
workshops

2.0

C/C++ v 1.0.
First hybrid
applications

with MPI* and
OpenMP
appear.

1.0

The merge of
Fortran

and C/C+
specifications

begins.

2.0

Unified Fortran
and C/C++:

Bigger than both
individual

specifications
combined.

2.5

Incorporates
task

parallelism.
The OpenMP

memory model
is defined and

codified.

3.0

Support
min/max

reductions in
C/C++.

3.1

Supports
offloading

execution to
accelerator

and
coprocessor

devices, SIMD
parallelism,
and more.
Expands
OpenMP
beyond

traditional
boundaries.

4.0

OpenMP supports
taskloops, task

priorities, doacross
loops, and hints for
locks. Offloading

now supports
asynchronous
execution and

dependencies to
host execution.

4.5

2016 2017 2018

Supports:
Memory
Management
API, Reverse
Offload, Loop
construct,
Detached
tasks, Custom
Mappers,
Tools API

5.0

2019 2020

loop
transformation
(tiling, ...),
Improved `omp
loop`*, variant
overloading,
runtime variant
selection*,
compiler
agnostic "built-
in assume"

5.05.1

Permanent ARB Auxiliary ARB

Relevance of OpenMP

OpenMP is about 50%, out
of all choices of X

Update late 2016: 75% of codes
use OpenMP

• Programming Accelerators
• Manage memory allocations (High Bandwidth, Low Latency, Accelerator)
• memories) with traits (pinned memory, etc)
• Data movement of complicated data structures (e.g., deep copy)
• Support for latest C++ and Fortran standads
• Interoperability with libraries
• Performance portable directives
• Task parallelism for asynchronous execution to orchestrate work between

CPUs and Accelerators
• SIMD directives (to support SIMD parallelism)
• Focus on continuity of technology and early access to users

NWCHEME3SM CANDLELQCD

6 Exascale Computing Project

OpenMP Offload in QMCPack

Courtesy Paul Kent (ORNL) and Ye Luo (ANL) from QMCPack team.

Tests from miniQMC Performance with OpenMP Impls. ● Recent work (last few months)
with clang to improve it, e.g.,
on target region-to-stream
scheduling, support for
std::complex shows promise
for performance.

● Still can’t show clang result
due to unique-to-Summit
CUDA driver problem soon to
be fixed, but clang OpenMP
estimated to have 0.75
performance of IBM XL.

● Also have run with Cray clang
and AMD AOMP correctly.
These show promise though
don’t have all feature support
of clang.

● Got code to work with oneAPI.
→ IBM OpenMP is shown reasonably performant though rapid development of LLVM OpenMP has shown
significant promise to allow for better performance over IBM offload.
→ QMCPack will continue to track performance of latest OpenMP implementations available on ECP systems.

Other Implementations

Figure 7: Test results impacting performance in MiniQMC
Figure 8: Performance of QMCPack with IBM OpenMP

7 Exascale Computing Project

Functionality Status of Features in OpenMP
Implementations

Thanks to Colleen Bertoni, JaeHyuck Kwack and organizers of Feb 2020 ECP AM OpenMP Vendor BoF

Shows the
features that are
commonly
supported across
OpenMP
Implementations

Figure 1: Feature support of OpenMP directives in different OpenMP Implementations

8 Exascale Computing Project

From Christopher
Daley
NERSC

9 Exascale Computing Project

How is this being addressed?

● LLVM implementations

● OpenMP performance benchmarks

9

10 Exascale Computing Project

OpenMP Version 5.0
• OpenMP 5.0 introduced powerful features to improve programmability

loop
Construct

Initial C11, C++11, C++14 and C++17
support
Complete Fortran 2003 Support, Initial Fortran 2008
Support

Detachable
Tasks

Unified Shared
Memory

Data Serialization for Offload (Deep
Copy)Meta-

DirectivesParallel
Scan Improved Task

Dependences

Reverse
Offload

Task-to-data
Affinity

Collapse Non-Rectangular
Loops

Multi-Level
Parallelism

Task
Reductions Memory

Allocators Dependence
Objects

Tools
APIs

Function
Variants

Improved Affinity
Support

Interoperability and Usability
Enhancements

11 Exascale Computing Project

What are the important features are important to
applications?

11

• Loop construct
• Unified shared memory support
• Accelerator data management

– Non-contiguous data mappings

• Memory allocators
• Metadirective and variants
• Tasks

– Detach
– Reductions

• Deep copy
• C++ virtual methods

12 Exascale Computing Project

loop Construct

• Existing loop constructs are tightly bound to execution model:

• The loop construct is meant to let the OpenMP implementation pick choose
the right parallelization scheme.

join

distribute work

barrier

fork

#pragma omp for
for (i=0; i<N;++i) {…}

#pragma omp simd
for (i=0; i<N;++i) {…}

…

#pragma omp taskloop
for (i=0; i<N;++i) {…}

generate tasks

taskwait

12

13 Exascale Computing Project

How to use modern OpenMP on Accelerators

#pragma omp target teams
#pragma omp distribute
for (i=0; i<N; ++i) {
#pragma omp parallel for
for (j=0; j<N; ++j) {
x[j+N*i] *= 2.0;

}
}

■ The target construct offloads the
enclosed code to the accelerator

■ The teams construct creates a league
of teams

■ The distribute construct distributes the
outer loop iterations between the league
of teams

■ The parallel for combined construct
creates a thread team for each team
and distributes the inner loop iterations
to threads

working now

14 Exascale Computing Project

How to use modern OpenMP – Execution Example

#pragma omp target
#pragma omp loop bind(thread) \

collapse(2)
for (i=0; i<N; ++i) {
for (j=0; j<N; ++j) {
x[j+N*i] *= 2.0;

}
}

■ The target construct offloads the
enclosed code to the accelerator

■ The loop construct allows concurrent
execution of the associated loops

working soon

15 Exascale Computing Project

How to use modern OpenMP – Execution Example

#pragma omp target teams
#pragma omp loop bind(teams)
for (i=0; i<N; ++i) {
#pragma omp loop bind(thread)
for (j=0; j<N; ++j) {
x[j+N*i] *= 2.0;

}
}

■ The target construct offloads the
enclosed code to the accelerator

■ The teams construct creates a league
of teams

■ The loop construct allows concurrent
execution of the associated loops,
iterations are "logically" spread across
the OpenMP threads in the binding
thread set

working very soon

16 Exascale Computing Project

Continuum of Control

Descriptive

• Express “what”

• Ignore implementation

• Rely on quality of implementation

Prescriptive
■ Express “how”
■ Focus on implementation
■ Expose control over

execution

#pragma omp task

#pragma omp loop

#pragma omp for
#pragma omp for \

schedule(static,5)

■ OpenMP strives to
▪ Support a useful subset of this spectrum
▪ Provide a structured path from descriptive to prescriptive where needed

17 Exascale Computing Project

What are the important features are important to
applications?

17

• Loop construct
• Unified shared memory support
• Accelerator data management

– Non-contiguous data mappings

• Memory allocators
• Metadirective and variants
• Tasks

– Detach
– Reductions

• Deep copy
• C++ virtual methods

18 Exascale Computing Project

Unified Virtual Memory Support

#pragma omp requires unified_shared_memory
for (k=0; k < NTIMES; k++)
{
// No data directive needed for pointers a, b, c
#pragma omp target teams distribute parallel for
for (j=0; j<ARRAY_SIZE; j++) {

a[j] = b[j] + scalar * c[j];
}

}

■ Single address space over CPU and GPU memories
■ Data migrated between CPU and GPU memories transparently to the

application - no need to explicitly copy data

19 Exascale Computing Project

What are the important features are important to
applications?

19

• Loop construct
• Unified shared memory support
• Accelerator data management

– Non-contiguous data mappings

• Memory allocators
• Metadirective and variants
• Tasks

– Detach
– Reductions

• Deep copy
• C++ virtual methods

20 Exascale Computing Project

Non-contiguous data updates and mappings

20

allocate(a(nx, ny))
!$OMP TARGET DATA MAP(to: a(1:nx/2, 1:ny))
…
!$OMP TARGET TEAMS DISTRIBUTE

! a(1:nx/2, 1:ny) = a(1:nx/2, 1:ny)/nx
!$OMP END TARGET TEAMS DISTRIBUTE
…
!$OMP END TARGET DATA

21 Exascale Computing Project

What are the important features are important to
applications?

21

• Loop construct
• Unified shared memory support
• Accelerator data management

– Non-contiguous data mappings

• Memory allocators
• Metadirective and variants
• Tasks

– Detach
– Reductions

• Deep copy
• C++ virtual methods

22 Exascale Computing Project

How to use modern OpenMP – Data Placement

#pragma omp target teams dist...
{ double Scratchpad[PartitionSize];

pragma omp allocate(Scratchpad) \
allocator(omp_pteam_mem_alloc)

}
// OR
double Scratchpad[PartitionSize];
#pragma omp target teams dist... \

private(Scratchpad)\
allocator(omp_pteam_mem_alloc)

{ // Do stuff
}

■ The allocate directive allows to place
variables in different memory regions,
e.g., omp_pteam_mem_alloc will put
variables into "shared GPU memory"

■ The omp_alloc runtime call allocates
memory dynamically using a specified
allocator, e.g., omp_pteam_mem_alloc

23 Exascale Computing Project

Example: Using Memory Allocators

23

void allocator_example(omp_allocator_t *my_allocator) {
int a[M], b[N], c;
#pragma omp allocate(a) allocator(omp_high_bw_mem_alloc)
#pragma omp allocate(b) // controlled by OMP_ALLOCATOR and/or omp_set_default_allocator
double *p = (double *) malloc(N*M*sizeof(*p));

#pragma omp parallel private(a)
{

some_parallel_code();
}

#pragma omp target firstprivate(c)
{

#pragma omp parallel private(a)
{

some_other_parallel_code();
}

}

omp_free(p);
}

allocate(my_allocator:a)

allocate(omp_const_mem_alloc:c) // on target; must be compile-time expr

allocate(omp_high_bw_mem_alloc:a)

omp_alloc(N*M*sizeof(*p), my_allocator);

24 Exascale Computing Project

What are the important features are important to
applications?

24

• Loop construct
• Unified shared memory support
• Accelerator data management

– Non-contiguous data mappings

• Memory allocators
• Metadirective and variants
• Tasks

– Detach
– Reductions

• Deep copy
• C++ virtual methods

25 Exascale Computing Project

Metadirective

25

#pragma omp target teams
{
#pragma omp metadirective \
when(device={kind(nohost)}: distribute parallel for) \
default (parallel for)
for(int i=0; i<N; i++)

C[i] = A[i]+B[i];
}

26 Exascale Computing Project

Begin declare variant
// Nvidia

#pragma omp begin declare variant match(device={arch(nvptx)}, \

implementation={score(1):vendor(llvm,ibm)})

float fast_sqrt(float __x) { return __nv_sqrt(__x); }

#pragma omp end declare variant

// Intel

#pragma omp begin declare variant match(device={arch(haswell)}, \

implementation={score(1):vendor(intel)})

float fast_sqrt(float __x) { return intel_asm_sqrt(__x); }

#pragma omp end declare variant

// Default

float fast_sqrt(float __x) { return slow_sqrt(__x); }

27 Exascale Computing Project

What are the important features are important to
applications?

27

• Loop construct
• Unified shared memory support
• Accelerator data management

– Non-contiguous data mappings

• Memory allocators
• Metadirective and variants
• Tasks

– Detach
– Reductions

• Deep copy
• C++ virtual methods

28 Exascale Computing Project

What are the important features are important to
applications?

28

• Loop construct
• Unified shared memory support
• Accelerator data management

– Non-contiguous data mappings

• Memory allocators
• Metadirective and variants
• Tasks

– Detach
– Reductions

• Deep copy
• C++ virtual methods

29 Exascale Computing Project

Task Reductions

• Task reductions extend traditional
reductions to arbitrary task graphs

• Extend the existing task and
taskgroup constructs

• Also work with the taskloop
construct

int res = 0;
node_t* node = NULL;
...
#pragma omp parallel
{

#pragma omp single
{

#pragma omp taskgroup task_reduction(+: res)
{

while (node) {
#pragma omp task in_reduction(+: res) \

firstprivate(node)
{

res += node->value;
}
node = node->next;

}
}

}
}

29

30 Exascale Computing Project

What are the important features are important to
applications?

30

• Loop construct
• Unified shared memory support
• Accelerator data management

– Non-contiguous data mappings

• Memory allocators
• Metadirective and variants
• Tasks

– Detach
– Reductions

• Deep copy
• C++ virtual methods
• Interoperability with GPU streams

31 Exascale Computing Project

OpenMP 5.0 Improves Using Devices:
Deep Copy Support

• Not all devices support shared
memory so requiring it makes a
program less portable

• Painstaking care was required to map
complex data before 5.0

• OpenMP 5.0 adds deep copy support
so that programmer can ensure that
compiler correctly maps complex
(pointer-based) data

31

typedef struct mypoints {
int len;
double *needed_data;
double useless_data[500000];

} mypoints_t;

// no declare target needed
int do_something_with_p(mypoints_t *p);

#pragma omp declare mapper(mypoints_t v)\
map(v.len, v.needed_data, \

v.needed_data[0:v.len])

mypoints_t * p = create_array_of_mypoints_t(N);

#pragma omp target map(p[:N])
{

do_something_with_p(p);
}

32 Exascale Computing Project

What are the important features are important to
applications?

32

• Loop construct
• Unified shared memory support
• Accelerator data management

– Non-contiguous data mappings

• Memory allocators
• Metadirective and variants
• Tasks

– Detach
– Reductions

• Deep copy
• C++ virtual methods
• Interoperability with GPU streams

33 Exascale Computing Project

Classes with virtual methods

class Base {

virtual void something() = 0;

virtual void mapSelf() = 0;

}

class Derived : public Base {

void something() override { /* do logic */ }

void mapSelf() override {

#pragma omp target enter data map(to:this[0])

}

}

void foo() {

Derived d;

d.mapSelf();

bar(&d);

}

void bar(Base *b) {

#pragma omp target

b->something();

}

OpenMP 5.0 will support other C++ accelerator frameworks
• Number of related technologies: Kokkos, RAJA, OpenACC, CUDA/HIP, SYCL

• Goal is to deliver enhanced OpenMP to address increasing heterogeneity and

complexity of systems (e.g. accelerator offloading, tasks)

Kokkos RAJA

OpenMP OpenACC

CUDA(ptx)/HIP(gcn)/SYCL/OpenCL

Service Layers

CUDA /
HIP

Kokkos OpenACC OpenMP 5.0 RAJA SYCL

Languages C/C++ C/C++ C/C++/
Fortran

C/C++/
Fortran

C/C++ C/C++

Prog. Style Template
Meta-

programming,
C++11 lambdas

Directive-
based

Directive-
based

C++11
lambdas

Template
Meta-

programmi
ng, C++11
lambdas

Parallelism SIMT OpenMP,
Pthreads,

CUDA,
HIP

SIMD,
Fork-Join,

CUDA,
HIP

SPMD,
SIMD,
Tasks,

Fork-Join,
CUDA,

HIP

OpenMP,
CUDA,

HIP,

OpenCL

Licensing/
Accessibility

Proprietary Open-sourced Few
compilers
Not on all

arch.

Open-
sourced

Open-
sourced

Royalty-
Free

Abstraction
Level

Low Medium High High Medium Medium

HIP targets are work-in-progress activities

35 Exascale Computing Project

What are the important features are important to
applications?

35

• Loop construct
• Unified shared memory support
• Accelerator data management

– Non-contiguous data mappings

• Memory allocators
• Metadirective and variants
• Tasks

– Detach
– Reductions

• Deep copy
• C++ virtual methods
• Interoperability with GPU streams

36 Exascale Computing Project

Interop: get stream/queue/etc.
omp_interop_t o = OMP_INTEROP_NONE; intptr_t type;

#pragma omp interop tasksync init obj(o) depend(inout: a)

omp_get_interop_property(o, OMP_INTEROP_TYPE, &type);

if (type == OMP_INTERFACE_CUDA) {

cudaStream_t s;

omp_get_interop_property(o, OMP_INTEROP_TASKSYNC, &s);

cublasSetStream(s);

call_cublas_async_stuff();

} else {

// handle other cases

}

#pragma omp interop tasksync destroy obj(o) depend(inout: a)

37 Exascale Computing Project

Tuning OpenMP target : Thread Blocking Effects

#pragma omp target
#pragma omp teams distribute num_teams(nblocks) thread_limit(nthreads)
for(int ss=0; ss<nblocks; ss++) {
#pragma omp parallel for

for(int tt=0; tt<nthreads; tt++) {
auto tmp = eval(ss*nthreads+tt,expr);
vstream(me[ss*nthreads+tt],tmp);

}
}

nblocks nthreads GB/s

Default Default 240

65536 8 162

32768 32 252

640 128 289

4096 256 306

8657700619

Code from GridMini in
ECP's Lattice QCD

38 Exascale Computing Project

Functionality of OpenMP C Implementations Based on SOLLVE’s
V&V

* Obivan is a HPC cluster @ UDel

For further information, e.g., understanding of failures, visit: https://crpl.cis.udel.edu/ompvvsollve/results/

Results for
tests
based on
QMCPack

→ Feature
support in
OpenMP
runtimes
needs to
be
improved.

Figure 1: Table of test results for OpenMP C Implementations. Courtesy Swaroop
Pophale and David
Bernholdt

https://crpl.cis.udel.edu/ompvvsollve/results/

39 Exascale Computing Project

Functionality of OpenMP C++ Implementations

→ Most OpenMP offload features in all OpenMP implementations work.

→ target enter exit data isn’t supported properly across any OpenMP
implementations.
For further information, e.g., understanding of failures, visit: https://crpl.cis.udel.edu/ompvvsollve/results/

Tests based on GEMV from QMCPack.

Figure 3: Table of test results for OpenMP C++ Implementations.

Courtesy Swaroop Pophale (ORNL) and David Bernholdt (ORNL)

https://crpl.cis.udel.edu/ompvvsollve/results/

40 Exascale Computing Project

OpenMP Offload in HPGMG

→ IBM xl’s OpenMP offload performance shown with HPGMG is encouraging

■ HPGMG is a DOE benchmark which may
be included in the SPEC HPC 2020
benchmark suite

■ The plot compares CUDA, OpenACC, and
OpenMP performance on 1 socket of the
Summit supercomputer using 3 MPI ranks
and 3 GPUs for the Unified Memory
version of HPGMG run on Summit.

■ Results for the explicit data management
version of HPGMG will be shown at a later
date when the IBM compiler fixes a
reported bug and the CCE compiler
supports OpenMP pointer attachment

Higher is better
Figure 5: Performance of HPGMG with different Implementations.

41 Exascale Computing Project

Performance of SU3 LQCD Benchmark with OpenMP Libraries

→ Results for SU3 benchmark run on NVIDIA Tesla V100 with different OpenMP libraries (left plot) shows how clang provides best performance of 640 GFLOP/s
→ The performance of clang OpenMP is 3% of peak and is very low compared to other Compilers. However, manual SPMDization of code can reduce implicit memory
flushes and increases performance to 401 GFLOP/s.
→ Ongoing changes in clang OpenMP can provide better performance over the other OpenMP vendor libraries.

● Developed benchmark code representative of applications in ECP Application Project LQCD. The code is at
https://bitbucket.org/dwdoerf/su3_bench.

● Ran with three different OpenMP libraries, with CUDA and with PGI’s OpenACC.
● Note that the peak GF/s in plots refers to the theoretical floating point performance based on the Arithmetic Intensity of the offloaded

kernel. A Volta GPU has a peak GF/s of 7800 GF/s for kernels which are not bound by memory bandwidth.

Thanks to Chris Daley and Doug Doerfler at NERSC.

Figure 7: Performance of SU3 with different ImplementationsListing 1: GPU Computation region of SU3 benchmark

https://bitbucket.org/dwdoerf/su3_bench

42 Exascale Computing Project

Conclusions
■ On ECP Systems (particularly Summit) compilers are ready for device offload.

Fundamental features are available. Still, tests could be improved to handle real-world
data structures with pointers.

■ Applications can move towards OpenMP offload using clang/LLVM OpenMP as it has
support for many new OpenMP 5.0 offload features.

■ IBM’s support for OpenMP offload for C is mature. Could be improved for Fortran.
■ Performance of IBM OpenMP offload is 70% of CUDA performance in HPGMG.
■ While QMCPack currently relies on IBM xl OpenMP for offload, it’s recently (a) shown

to potentially have good performance from using LLVM clang OpenMP offload support
and (b) works with other vendor compilers

■ The SPEC HPC 2020 benchmark suite is under active development. The benchmarks will
be pruned over the next few months based on benchmark readiness and formally meeting
benchmark suite requirements (no new benchmarks will be considered at this stage).

